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success probabilities.

REPEATED LIKELIHOOD RATIO TESTS
FOR CURVED EXPONENTIAL FAMILIES

Steven Paul Lalley, Ph.D.
Stanford University, 1980

A class of repeated significance tests for curved hypotheses
in multiparameter exponential families is studied, and asymptotic
formulae for the significance levels of such tests are obtained.

Special attention is given the important case of comparing Bernoulli
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REPEATED LIKELIHOOD RATIO TESTS
FOR CURVED EXPONENTIAL FAMILIES

1. Introduction
We study here the significance levels of repeated likelihood

ratio tests for nested hypotheses in multiparameter exponential

families. In various hypothesis testing situations, the peculiar
constraints of medical research (and the even more peculiar con-
straints of non-medical research) occasionally preclude the determin-

ation of a sample size in advance of experimental results: various

authors (notably Armitage (1], [2], and Schwartz {11]) have argued é
that in many such cases a reasonable option is provided by certain *
simple stopping rules based on the behavior of a (generalized) like-
lihood ratio statistic. Unfortunately, determining the operating
characteristics of such procedures remains a difficult issue,
although in recent years important advances have been ma&e by
Woodroofe [14], [15], [16], Siegmund [12], and Lai & Siegmund (9],
(10].

Let {Pe, 8 €0} be an exponential family of probability

measures on n@:
(1.1) (4Py/dBy) (x) = exp{6'x~y(®)} .

The natural parameter space { is assumed to be an open subset of IRP,

and § 18 assumed to be strictly convex on §}. Suppose that 91 is a

smooth relatively closed ql-dimensional submanifold of Q, and that

90 is a smooth relatively closed qo-dinenaional submanifold of Ql.




P

where 0 < 9, < ql.g p: these are to be the null and alternative
hypotheses, respectively. (In the terminology of Efron [5],

{PB : 8 eQi] are "curved e;\tponential families.") Let xl,xz,... be
i.i.d. from Pe, and let e n be the generalized likelihood ratio sta-

tistic for testing

The repeated likelihood ratio test will be based on the stopping rule

TA m, where

1.2) T=T = min{n>m :/\n >a}l ;

0

if T< m, HO should be rejected, whereas if T > m,, H. should not be

10
rejected.
The main result of this work is that for my ~ E'z'la and

-1
m ~ 61 a , and Goeﬂo

(qy-q,)/2
170 -a

(1.3) Peo{Ta < ml} ~Ca e

as a > ©, provided a certain host of regularity conditions are
satisfied. The constant C, which depends on 60, el, and Ez, will

take the unpleasant form of a surface integral in rP , which may,

however, be evaluated numerically in many cases of statistical

interest.




2, Example: Testing for the Equality of Two Bernoulli Parameters

Suppose we observe a sequence {(xi’Yi) t1=1,2,... } of

i.i.d. random vectors taking values in the set {0,1}2, with

e, e, (1-e1) (1~e2)
(2.1) Ppl'pzfxl =e), Y; -e2] =p; P, (1-py) (1-p,)

where s, €{0,1}. The parameters Py and p, are unknown; we wish to

test the hypothesis Py = Py

Imagine that the variables Xi,Y1 are success indicators in a
clinical trial. Patients suffering from a particular disorder arrive
infrequently at a clinic where they may be treated according to one
of two procedures: because of the nature of the disorder the
patients must be treated immediately, and a response (success or
failure) is apparent within a relatively short period of time
(compared to interarrival times). If the disorder is serious,
sequential experimentation to compare the efficacies of the two pro-
cedures may be appropriate.

Such a situation was considered by Siegmund and Gregory (131,
who proposed several sequential procedures for testing the hypothesis
P, = Py One of these was a sequential version of the generalized

1ikelihood ratio test, which had previously been studied in different

contexts by Armitage (1], [2], Schwartz [11], Siegmund [12], and

Woodroofe [15], [16]. This test is easily described. Let

R e NN, 1 i .
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(2.2) H(x) = x log x + (1 -x)log(l -x)
I(x,y) = H(x) + H(y) - 2H((x +y)/2)
Ay = IGe,y)
T=T, = min{n >m; : A >a}
where
x = at jgl X,
n

<
[]
=}
e
<

The variable An is the logarithm of the generalized likelihood ratio
statistic, which is commonly employed as a test statistic in fixed
sample procedures. In using it as the basis for a sequential test,
one observes pairs (xi’Yi) until the time T A my (m1 being some fixed
patient horizon), rejecting the hypothesis Py = Py iff T <m.

The problem of computing significance levels and power func-
tions for the test procedure just described is not nearly so easy as
for the fixed-sample generalized likelihood ratio test, whose asymp-~
totic theory has been thoroughly developed. Siegmund and Gregory
{13] have derived heuristically an asymptotic formula for the Type I
error probability; their formula agrees formally with a result of
Woodroofe [15] which was proved under assumptions too stringent to

include this problem as an admissible case, This formula is con-

tained in Theorem 1 below.




e

THEOREM 1. Let €1 and 62 be fixed constants such that
(2 log 2)-1 < 61 < 62 Suppose that my = aEl + o(a) and

o, = aE2 + o(a) (recall that Ta = min{n >m0 : /\n >al}). Then as a +

a2 e {1 <m} > clri€ 6

(2.3) P,p a

for every pe(0,1). For 0 < p < 1/2, C(p;€1,€2) = C(2p-1/2; €1,€2)

and
(2.4) C(p; €}, €))

- L2 V(E,2p - E) [1(E,2p - £) 712

€(0,2p) N {£: &1 <1(8,2p-0)<M)

- [p -p)/EQA-E)(2p-E) (L +E -2p) 112 aE
and

(2.5 ")
2. V(p;5P,) = lim E e .
1’72 aso PP

That the limit in (2.5) exists (except for a countable set of
(pl,pz) for which Py # pz) is a consequence of Theorem 1 of Lai and
Siegmund [9]. 1In fact, Woodroofe [16] has obtained an integral
formula for the function v(pl,pz) which is explicit enough to allow
numerical integration.

The restriction on the initial sample size m is rather
peculiar and deserves some comment. Notice that the function
I(py»P,) is bounded for (pl,pz) € [0,1]2 : it achieves a maximum of

2 log 2 at the points (0,1) and (1,0). Thus An > a can occur only if
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n > a/2 log 2. Moreover, if An > a for some n close to a2 log 2,
then (E;,;;) must be close to either (0,1) or (1,0); since in most
conceivable applications neither p; mor p, would be close to zero or
one, it would be somewhat unsettling to terminate the experiment on
the basis of such an anomolous sample. A larger initial sample size
protects against this possibility.

In the following sections an analogue of.Theorem 1 will be
formulated and proved under the assumption that the observations are
from a multiparameter exponential family. This theorem will have one
major shortcoming: namely, it will be necessary to impose even more
stringent requirements on the initial sample size. (For the problem
discussed in this section, the hypotheses of Theorem 2 would require
€ > (log 2)-1, i.e., that the initial sample size be twice as large
as Theorem 1 requires it to be.) The mathematical difficulty which
necessitates the stronger conditions stems from the fact that large
deviations theorems need not in general be uniform near the '"boundary"
of an exponential family. Fortunately, this difficulty disappears in
many concrete cases of pt ,.cal importance: for instance, whenever
the mean parameter space is all of IRp; and also in multinomial
families,

We will give a (somewhat sketchy) proof of Theorem 1 for

those cases where

(2.6) N(€1,€2;p) = {(r, 2p-1) :0<r <2 and

651 < I(r, 2p-1) < -1y

A
M
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is contained in tlie open square (0,1) x (0,1). The argument has two
steps: first we show that only those sample paths for which (2&,;&)
is "near" N contribute substantially to the probability in (2.3);

then we perform a local analysis near N.

PROPOSITION 1. As a +

-1, - = -1/2 _ ~k -a
2.7 Pp,p{Tafiaez s dist((xT,yT),N) >a log a} = o(a e °)
for every k > 0.
NOTE: In adapting the arguments presented here to the more general

problem discussed in the following sections the primary difficulty is
in obtaining analogues of Proposition 1 (¢f. Section 6). It is
because of these difficulties that the more stringent assumptions on

initial sample size are necessary.

PROOF. This is based on the "fundamental identity of sequential

analysis," viz.,
(2.8) P (A =/ L.dq=/ /Y (& 1, L)dp, d
: p,p A T 00 “p,p, A TP Py
where
(2.9) QB = e (Bap, dp
0 0 pl,p2 1 2
and
ol o | nlx +y) n(2-x -y )
(2.10) Ln = (n+1) nx |[iny [p n (1-p)

e g




(Bere Q(B) is defined for all events Be & ((Xl,Yl),(Xz,Yz),... ), and
(2.8) holds for all A in the "stopped" o-algebra of events A such
that A N {T<nled ((X,Y,),..., (X ,Y)) for all n).

Stirling's formula (cf. Feller [6], Chapter II, inequality

(9.15)) provides a (crude) upper bound for Lt

(2.11) L <Cn e e

where

(2.12) & = nl20((x +y )/2) - (x +y )log(p/(1-p)) - 21log (1-p)]

for some constant C > 0. Now

H(w) - ® log(p/(1-p)) - 2 log(l-p)
is a strictly convex, smooth, nonnegative function of we (0,1) which
is zero for w = p and satisfies H"(w) > 0. Thus there is a constant
c* > 0 such that (x,y) € (0,1)* and
(2.3) dist((x,y), {(r,2p-r) : 0<r<2p}) > 3§
implies
(2.14) 2H((x +y)/2) - (x +y)log(p/(1-p)) - 2 log(1 -p) > C &% .
Clearly (2.8), (2.11), and (2.14) imply that for every § > 0

(2.15) Pp'p{Tai"e;l; dist((?,r,y.r),{(r,zp—r):0_<_r_<_2p}) >8a % logal

= o(a_k e-a)

for avery k > 0, since AT > a.




e e s e e s . e

Similarly it may be shown that if T < ag;,

1/2

diSt((;T’;T)’ N) >a log a, but

dist((;T,;T), {(x,2p-1), 0<r<2p}) < 63-1/2 log a
for some (sufficiently small) 6§ > 0, then

k&
(2.16) Ab-a>C loga ;

this together with (2.8) and (2.11) imply

(2.17) Pp’p{TiaE'z-l; dist((;,r,;,r), N) > a_1/2 log a;
- = -1/2
dist((xp,yp), {(r,2p-r), 0<r<2p}) < da log al
= o(a-k e 3)

for all k > 0. This and (2.15) imply (2.7). [f//
For the next step of the proof we will again exploit the
fundamental identity of sequential analysis, but with a new prob-

ability measure, which we will again refer to as Q. Let

2p
(2.18) Q(B) = J P 2p-r (B)de/(2p)
=0 ’
then
2p  nx n-nx ny.
(2.19) ap™/aq™ -1 - J r 1-r) M2p-r) "
P,p n r=0

n-ny_ -
* (L4r-2p) dr/(2p)




(where P;n; and Q(n) denote the restrictions of Pp p and Q to

’ ]

B (00D, e, (XY 00D

PROPOSITION 2. Suppose that for some (r,2p ~r) €N,

(2.20) aist((%,5 ), (r,2p-1)) <a/2+17

Then as n > «©

-A
n,n -1,1/2
(2.21) Ln ~ e (;)

% (2p) (201 - o)L 4 (2(2p - 1) @ 41 -2p)) D)

X -r T x -~
* exp (121—) ~__n M _n
yn+r-2p r yn+r—2p
where
-1 -1
(2.22) (r(1-1)) ((2p-r)(1+r -2p))
M =
r -1 -1
(x(1-1)) (2p-)(Q+x-2p))

1 1
- <p(1-p>)‘1[ J .
1 1

Relation (2.21) holds uniformly for (§;,§;) satisfying (2.20) with
(r,2p-~r) €N,

The proof of this is omitted: it is a straightforward but
tedious exercise in the use of Laplace's method of asymptotic
expansion.

The strategy for the rest of the proof is to show that for

each (r,2p-r) €N, (/\T-a) and

10




yT+t-2p

are approximately independent under Er 2p-r as a + ®, For then the
1]

Central Limit Theorem, the Nonlinear Renewal Theorem of Lai and

Siegmund [9], and the fact that

Ta Pr: 2p-r 1
(2.23) “a I(r,2p-r)
will make possible the evaluation of E -1/2 e 2 L. 1, where
P r,2p~r T “A°
~1 - — -1/2
(2.24) A= {Taiaez 3 dist((xT,yT), N) <a / log a}l .

Nearly all of the technical difficulties associated with this

program are obviated by the following inequalities.

LEMMA 1. Let Sn have a binomial distribution BI(n,p) under

Pp, pel0,1). Then for eachk >0, § >0, and ¢ > 0

(2.25) max P _{|S_-np| >(’5n!i log n} = o(n-k)
Op<t P 7
and
+a -6n®
(2.26) max P _{|S_-np| >6n } = o(e™™) .
osp<t PR

PROOF. Using the Markov inequality,

11




r—

-np <
PP[Sn np <n

1/2
8pn Qa

= e

- exp{Bpnll2

that the 0(l1) term

COROLLARY 1. As a

(2.27) max
(r,2p-r)eN

(2.28) max
(r,2p-r)eN

(2.29) max P

(r,2p-r)
here
(2.30) n, =
(2.31) n2 =
(2.32) n, =

1/2

/2

f(n)} < E, exp{-8n~t s —ap) e BEM

-p +pe-Bn—1/2)n/e-8f(n)

+n(-8pn /2 402y 1/eBEM L o1 e 7BIM

.for B > 0, f(n) < 0. It is clear from the Taylor series expansion

is uniform in p. The reverse inequality may be

obtained similarly. ///

- 0O
_an/&
Pr,2p-r T, #ln,,ny1) = o(e )
Pr,2p-r {[Cn-tnll >C/log a,
—81/16
some n rln7,n3]] = o(e )
E— R -1/2
r,2p-r {lxn'-xnll +‘yn'_yn1| > Ca log a)

1/32
= o(e™? )

nl(a.r) = [a/I(r‘zp_r) _3‘2+D]
ny(a,r) = La/i(r,2p-r1) _attn/2 1
n3(a’r) - [a/I(r,Zp_r) +8‘§ ‘HI/Z :n

12
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(2.34) ;n-r T ;n-r &
= - |
g, = tn(x) = mp M_ ‘

yn+r—2p yn+r-2p

and ne (0,1/32) is some fixed constant. Relations (2.28) and (2.29) g
hold for all C > O,
The corollary is an easy consequence of the preceding lemma.

Define

(2.35) A = AN fT; €n 1}

2'"3

0 {eg(r) -t (r)] <1/10g a}
1

—— e ————

, n {[;T-;n [+I;T-;n [ < a2 log al
: 1 1
N{lx -r|+ly. +r-2p| < a7 EtN/4 ;
n n -
1 1
by Proposition 2
o -1/2 a Clogza |
; (2.36) lA a e L= O(e )
for some C > 0, so the Corollary implies that
2p
-1/2 a - -1/2 _a :
(2.37) a e Pp,p (A) L) Er,Zp-r(lA a e LT)dr/2p %
2p :
- -1/2 a ‘
Jo Er,Zp-r(lAr a e L.r)dr/Zp+o(1) . !

Now by Proposition 2 and (2.35),

13
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-

-(/\T-a)

1 1
L, ~e (7r I(r,2p-1))

a—1/2 o8 /

(2.38) 1, 2 (2p)

r

-1,1/2

c2r@-0t + @Ep-orr-2pnhH

. exp{cn (r)/2}1A s
1 r

and this hold uniformly for reN on Ar'
The "asymptotic independence" argument is completed by the

following result.

PROPOSITION 3. For each r € N such that the random variable

I(r,2p-r) + (Xl -r)BI/apll l(r 2p-r)

- 2
(r,2p-t) + (Y1-+r 2p)¢I/Bp2
fxl
has a nonlattice distribution when ~P_ . ,
Yl r,2p-r
-(AT_a) Pr 2p-r
(2.39) Er‘zp_r[e lsn ] - v(r,2p-1) =7, g

1

This result is implicit in the proof of the Nonlinear Renewal

Theorem given by Lai and Siegmund [9].

It is relatively easy to deduce Theorem 1 from (2.37)-(2.39).

Uniform integrability problems may be handled by using (2.36), the

Lemma, the Corollary, and the Berry-Esseen Theorem (for random

vectors). The details of these arguments are straightforward but

tedious, and will be omitted: they would, perhaps, serve only to

obscure the basic argument. The bloodthirsty reader should rest
agsured that his appetite for raw, gory arguments (and detailed
obscurity) will almost certainly be satisfied by the end of this

work.

e e

—
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3. Preliminaries Concerning Exponential Families
and Statement of the Main Result

Let xl,xz,... be an i.1.d. sequence of random vectors each
with law Pe. We will not distinguish between Pe, the measure on IRP,
and Pe, the measure on the O-algebra 3(x1,x2.... ). Recall that {f

X ~ Pe, then

(3.1) Ee X = Ve P(oe) = Mg

-

covy X = 92 4(8) =~ $(0) ;

since we have assumed Y to be strictly convex, 2(9) is perforce
positive definjte for each 0 €. Assume that uo =0,
Let ' = {ue; 8 €2} be the mean parameter space. Because

(0) = v2 P(8) is strictly positive definite, the map
8
(3.2) U :Q+T by
6 -+ Hg

is a diffeomorphism (this is the Inverse Function Theorem of
Calculus). Thus although T need not be convex, it is an open subset
of RP,

The (nonnegative) function

(3.3) 6(x) = sup (87x -¥(6))
0efl

is the "convex dual" of y. For x el the supremum in (3.3) is
uniquely attained at that 6 for which Hg = x; henceforth this 8 will

be referred to as a(x). It is evident that for xeT

15




(3.4) vV (x) = 8(x)

V2 o0 = 6™ .

Moreover, since 0eQ (by (1.1)), the set

(3.5) K, = {x eRP: ¢(x) <)}

is compact for each b > O,

Recall that Ql is a smooth, relatively closed ql-dimensional L_
submanifold of § and QO is a smooth relatively closed qo-dimensional
submanifold of Ql. Since 6 » Hg is a diffeomorphism, Fi = {ue :6891}
are smooth relatively closed submanifolds of I'. (NOTE: A convenient

and elementary source of information concerning the topological and 1

geometric concepts used here is Guillemin and Pollack [8].) Define

convex functions ¢0 and ¢1 by

|
(3.6) ¢1(X) = sup (eTx-W(B)) ; E'
6&91

the log generalized likelihood ratio statistic is then |

(3.7 An - n(¢1(Sn/n) - ¢0(Sn/n))

It is apparent that the behavior of the functions ¢0 and ¢1 will play
a crucial role in all that follows. !

Unfortunately, for a given x ¢ RP the supremum in (3.6) need
not be uniquely attained. For 805:91, a necessary condition for !

(3.8) eg x - (0 = sup (07 x - $(0))
Befl
i

16
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where mi(eo) is the space of tangent vectors to S'Zi in RP.
(Throughout the paper we will use the notation TN(y) to denote the X
space of tangent vectors to N at y: i.e., 1f N is a q-dimensional

submanifold of lRP, then for yeN

(3.10) TN(y) = {v eRP: 3 smooth g:[~1,1] + N

with g(0) =y and g'(0) = v} .

For each y €N TN(y) is a q-dimensional vector subspace of ®P.) Let

it dncin

(3.11) U, = {x el : the supremum in (3.6) is attained uniquely

i
at some point éi(x) E:Qi}

.

_L 1
LEMMA 1. For each O 891 the affine space ue + mi(e) intersects I‘i i
transversally at ue. Furthermore, for each 6 eQi there is a
neighborhood N(ue) of ue(open in T) such that N(ue) c Ui and such

that

6i : N(ue) + Qi

is a smooth submersion. If xel has an open neighborhood Nx c Ui

such that 81 :Nx -+ Qi is a smooth submersion, then

(.12 v 4,0 =B, t

1) Vs @v>o  yvem @, , |

17




and

~ 1
(3.14) ol vi ¢, (0w = 0 v oemm (8, ()

NOTE: Let Ny and N, be smooth submanifolds of RP, and let

y eNl n Nz. Then Nl and N2 are said to intersect transversally at y

if the tangent spaces together span ]Rp, i.e., if

(3.15) ™V, (y) + TNy(y) = rP .
A map g :N1 -+ N2 is said to be submersive at x ENl if for every
v eTNZ(g(x)) there exists a smooth f : [~1,1] + Nl with £(0) = x such

that (gof)'(0) = v; i.e., if dgx maps TNl(x) onto TNZ (g(x)).

1
PROOF OF THE LEMMA. Since d:l.m(u6 +mi(e) ) + dim(Tl"i(ue)) = p, the

L
transversality of Mg + TQi(G) and I‘i at g will follow from showing
16 yu9) el r {o}
(3.16) (8 NI, (ug) = {0

For (3.16), suppose g : [-1,1] [, is a smooth map such that
g(0) = Hg 3 then since W : Q + T is a diffeomorphism, there is a
0

smooth f : [-1,1] » Qi such that f(0) = 8_ and g(t) = Velb(f(t)). Now

0

8'(0) = ¥ Y(£(0)) - £'(0)
=3y - £ .

Since £'(0) emi(eo) and $(80) is positive definite, it is impossible

for g'(0) | mi(e This proves (3.16).
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Fix 80 eQi; there exists a neighborhood N(ue ) in T such that
0
if xeN(ue ), then

0
i
: (3.17) sup{(6T x - ¥(8)) :0€Q,  and Wy €N, )} |
< sup{(BT x - $(8)) :6&:91 and My EN(ue )} i
0 i;

L
may be chosen small enough that the affine spaces ug + mi(e) give a

0

and such that the supremum on LHS (3.17) is not attained. Now N(ue ) }
° |
I
1 \
unique ex for which x €Hg + mi(ex) , and such that the map x -+ Bx
x

"smooth fibration" of N(ue ): i.e., for each x &:N(].Je ) there is a
0

* is smooth and submersive. (This fact relies on the fact that the

4
spaces Mg + mi(e) intersect I‘i transversally at Hg» together with
the fact that the map 6 - mi(e) is a smooth mapping into the set of

q i—dimensional vector subspaces of lRp.) But the necessary condition

(3.9) together with (3.16) implies that for xe:N(ue ), Sx = 6i(x).
0
Next, suppose that x €' has an open neighborhood Nx c Ui such

that 61 : Nx -+ S'li is a smooth submersion. Then

(2/3%,)6,(x) = (3/3x,) (B, (0 "x - ¥(6, ()

A P ~
IR LR ICROPMEES

p A A ~
- kfl[(a/axj)(ei(x”k] * (39/36,) (8, (x)) = (ei(nt))j

since by (3.9) x - Vew(ai(x)) 1 mi(éi(x)). It now follows from
(3.12) that




2 ~
(3.18) Ve 0100 = (/3x O Ny oy ., 5

since x *> §i(x) is submersive this matrix includes TQi(éi(x)) in its
range, and clearly TQi(éi(x))i.is contained in the kernel. Thus
Vi ¢i(x) is invertible on Tﬂi(éi(x)). On the other hand it is non-
negative definite on RP since ¢i is convex. Consequently it must
be strictly positive definite on TQi(ai(x)). It may also be shown
using (3.18) that ¥> ¢, (x) Tni(éi(x))i'= 0. /11

Lemma 1 gives a partial indication of the importance of two
topological regularity properties: namely, transversality conditions
and the submersiveness of the MLE maps. Another reason the trans-
versality conditions figure in the analysis stems from the following

purely topological fact, which will be exploited in Section 6.

LEMMA 2. Suppose V is an open subset of Bﬁn and Nl’NZ are rela-
tively closed submanifolds of V. Let K be a compact subset of V such
that if xE:Nl N N2 N K, then N1 and N2 meet transversally at x. Then

*
for any € > 0 there exist § >0, § > 0, and a, > 0 such that for any

0

a >a_ and any yeV

0

(3.19) dist(y, Nl n N2 NK) > €a
dist(y, Nl NK) < §/a

implies

(3.20) dist(y, N2) > 6*/3 .

V<.._v.

T strA el L3

P A




In other words a point cannot be far from the intersection
without being far from one or the other of the two manifolds. This
is manifestly untrue of manifolds which intersect nontransversally:

e.g.,
N, = {(x,y) € IRz:y = x2}
2
N2={(x,y) e R":y=0} .

PROOF. We will give only a rough outline of the argument. Suppose

first that N1 and N2 are affine subspaces of RP: the existence of
%*

§ and § follows from the construction of disjoint angular corridors

around N1 and N2 as illustrated by Figure 3.1

X

Figure 3.1

(cross section)
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In the general case, N1 and N2 may be approximated to first
order by the appropriate translates of their tangent spaces; if Nl
and N2 intersect transversally at x, then the tangent spaces TNl(x)
and TNz(x) intersect transversally. Angular corridors may then be
constructed as before. Thus for each xE:Nl n N2 N K there is a
closed neighborhood Ux in TR’ and constants Sx’ 6: . ao(x) such that

for a z.ao(x) and yeV

dist(y, Nl n N2 NK N Ux) > €/a

and

dist(y, N1 nK N Ux) < 6x/a

imply

dist(y, N2) > G:Ia

The lemma now follows from a compactness argument (since Ny

and N, are relatively closed in V and K is compact, N N N, 0K

is compact). ///

The conclusion of the main theorem depends heavily on the
assumption that the MLE maps behave nicely near a certain critical
manifold, and also that the manifold Pl not contort itself too
strenuously in certain regions of I'. Let OO er, and define GO(GO)
to be the largest extended real such that the following three condi-

tions are satisfied:
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I. For every € 0<€<€,, the set {xeT : ¢(x) -egxw(eo)i &
is compact.
r, N .(8 +
II. For each xeT, (Meo+ 0( 0) ) such that d>1(x) -¢0(x) <&
there exists a neighborhood Nx of x in T such that Nx C Uo

A

and 60 is a smooth submersion on Nx’ with 6o(x) = 60.
1
III. For each er‘l ﬂ(ueo+m0(6£) ) such that ¢1(x) -¢0(x) < €0’

I'. intersects (p, +1TQ.(8.) ) transversally at x, and T
1 90 0'°0 1
intersects the level surface {yeT : ¢(y) —Gg y = ¢(x) -ng}
transversally at x.

Note that there is always a positive € such that {xeT :¢(x) - eg X

+ \p(eo) < €} 1is compact, since {xerP : ¢(x) - ng +\b(60) <€} is com-

pact (cf. (3.5), and reparametrize the exponential family). That

60(80) >0 may be deduced from this and Lemma 1. It should be noticed

that in the special case @ = Ql condition III is automatically

satisfied, and in case T = IRP, condition I is automatically

satisfied.

THEOREM 2. Suppose 0 < €1 < €2 < 60(90); recall that
-1

(3.21) T, = T=mnin{n>ag " :A >a} .

Then as a + ®

(q4-q4)/2 _
PO e cgh65 0

~1
(3.22) Peo{'l‘af_aé1 } ~a

where
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(3.23) c(€,,€,; 6,) = v(y) 21 ($(y) -d,(¥)))
1 0 0
(€,6:8)

[det (1, (1)) /det (B (y)) () +H, (1)) 1M/
- o(dy)

1
(3.28) M(€,6300) = [yely Ng +T04(00)) : € <00 -84 <&}

-(Ap-a)
(3.25) v(y) = :i: E@(y) e
(3.26) B () = N e, T REEG) T
~ -1 L
(3.27) Hy(y) = 2 £ T R NI 6)T N0 (1))
(3.28) Hy() = $BGNT -0 6, () +7 ¢y()

P is the orthogonal projection operator onto the space
'1520(90)_L n TFl(y), and ¢ is the volume element measure for the
manifold-with-boundary M(Gl,ez; 60).

Many comments are in order. First, conditions I and III
(transversality) imply that M(€1,€2; 80) really is a compact
manifold-with-boundary: this is a consequence of the Implicit
Function Theorem. Second, the 'det Hz(y)" which appears in the
numerator may be confusing: Hz(y) is a (positive definite) operator
on TFl(y) n TQO(GO)J; and the determinant is simply meant to be the

1
product of its eigenvalues on TPl(y) N TQO(GO) . Third, it remains
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to be seen that the integral is finite, and in fact that the inte-
grand is defined (cf. (3.25)). Notice that ¢-¢O is a continuous
function which is bounded away from zero on M(€1,EZ; 60). The other

two factors of importance require more care.

LEMMA 3. For every yeM(€1,€2; 60) the matrix Hl(y) + Hs(y) is

strictly positive definite on rP,

PROOF. Since }(8) is everywhere strictly P.D. it is clear that Hl(y)
is N.N.D. on RP and strictly P.D. on mo(eo)“L NTC (y). Also if
yeM(El,EZ; 90), then since €2 < 60(60) and EO(GO) satisfies
condition II, it follows from Lemma 1 that vi 8o(y) 1is N.N.D. on TP
and strictly P.D. on 'IQO(GO).

Now consider Vi(qb-qﬁl) (y). Since ¢ - ¢1 is a nonnegative
function on RP which is zero on I‘l, vi(q;-q;l) (y) is N.N.D. on rP

whenever y eI‘l, by Taylor's Theorem. Furthermore, if ye ., then

1!
~ 41
V; <b1(y) is zero on the vector subspace ml(e(y)) (cf. (3.14) of
~ L
Lemma 1). Thus V§(¢ -¢1) (y) is strictly P.D. on ml(e(y)) for each

A L
yel,. Now since (y+m1(6(y)) ) intersects I', transversally at y

1
(Lemma 1 again) it follows that V§(¢—¢1) (y) is strictly P.D. on
TI‘l(y).
e moce ™6y P
But Tl"l(y) + 0( O) +( 0( 0) ﬂTl"l(y)) = IRY, so
Hl(y) +H3(y) is strictly P.D. on P, 11/
As for v(y), the existence of the limit in (3.25) is a conse-

quence of a general theorem of Lai and Siegmund [9]. In order that

their theorem be applicable, however, a certain random walk
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assoclated with the process {’\n} must be nonlattice. 1In the next

lemma it is shown that this is so far almost every y eM(El,ez; 60).
LEMMA 4. For all El < < 60(90),

T
(3.29) oly eM(&, €5 80) : (0, (¥) ~¢u(¥)) + (X -y) " ¥ (4 =0) ()

has a nonlattice distribution when X }=0 ,

1~ Poy)

where 0(+) denotes the volume element measure on M(él,eo; 80).

PROOF. Call a point weRP a support point of the exponential family
if for some 6 € Pe{u : lu—mi < € >0 for each €>0. Clearly if w is
a support point, then Pe*{u: lu-w| <€ >0 for every 6% e and €>0.
Because the covariance matrices {(0) are strictly P.D., there exist
support points ml,...,mp which form a (vector space) basis for rP,

Let

I(y) = ¢, - ay(y) y ¢ IRP

A necessary condition for I(y) + (Xl—y)T Vy I(y) to have a lattice

distribution (under P@(y)) is that for any pair tw wj} of the atoms

i’

there exist a rational number a0y ! such that either

(3.30) qp, (IO +(w, -NT V. T = I +(w, -y ¥, 1(y)
{1,3} i y h| y

or

T T
(3.31) q{i'j}(l(y)+(wj—y) Vy I(y)) = I(y)+(mi—y) Vy I(y)
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Suppose that there is a y = yoe:M(Gl,Gz; 60) such that conditions
(3.30)-(3.31) are satisfied for y = Yo and some particular set
{q{i j}} of (g) rational numbers: we will show that there is a

*

L
neighborhood N(yo) of Yo such that if y'eN(yo) nrl ﬂ(ueo-FTQO(eo) ),
then (3.30)-(3.31) are not satisfied for y and the same set of
rationals {q{i j}}' By the countability of the rationals this will
prove (27).

Suppose the indices are labelled so that alternative (3.30)

holds. Consider the first order Taylor series of

(3.32) f{i,j}(y) = I(y)(l-q{i’j})

T
YlOpmagy, gy @y dagy 4y)) 0 VIG)

around y = yo:
T
(3.33) T 3O = (g magy gy 0=V -agy 4y))
. 92 I(yy) * (y-y,) .
y 70 0

1
Since v§ ¢o(yo) ) Tﬂo(eo) = 0, Lemma 1 and the transversality
L
condition III imply that Vi I(yo) ) (TQO(GO) n TFl(yo)) is strictly

P.D. Consequently, because w,,...,w 1is a basis for rP , it follows
1 P

1
L
that for each ue (TQO(BO) N TFl(yO)) satisfying |u| = 1, there is a

pair {1,j} such that

whenever t ¢ 0. Since Tf{1 3} is the principal term in f{i i) and
] ’
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L
since B = {u e(M,(6)) N T, (yy)) : Ju| = 1} is compact, there is a

§ > 0 such that

for any yE:Fl n (ueo -+TQO(60)1) satisfying 0 < ly-yoi < 8. This
proves the lemma. ///

Although this lemma together with the result of Lai and
Siegmund shows that the function v(y) 1is well-defined for almost
every y (do), there is as yet no hope of evaluating it. However, an
important result of M. Woodroofe has v(y) expressed as an integral
involving only the characteristic function of the random variable
considered in Lemma 4. Woodroofe's theorem makes possible the evalu-
ation of the constant appearing in Theorem 2 by numerical integration
in many cases of statistical interest: his paper [16] contains not
only a proof of the theorem but several interesting examples of its
use, (NOTE: Actually Woodroofe's theorem carries certain hypotheses
concerning the smoothness of the underlying distributions which are
unnecessary, as an elementary modification of his proof shows).

Theorem 2 generalizes another theorem of Woodroofe (Theorem 3
of [15]) which essentially covers the case Q= Ql’ but under smooth-
ness conditions on the distributions {Pe} which rule out all problems
involving categorical data. His proof seems to be very much tied to

these assumptions, and bears no resemblance to the approach used in

this work.
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For the proof of Theorem 2 we will assume that OEQO and

60 = 0, For arbitrary eoeﬂo we may always reduce to this case by

reparametrizing and recentering the expoential family. )




4, Normal Approximation in Several Dimensions

Certain refinements of the multidimensional Central Limit
Theorem play a key role in the analysis which follows. Of primary
importance are (1) bounds on the probability of moderate deviations
of the sample mean, and (2) uniformity in the convergence of
n-llz(Sn -nue) (under PB) over compact subsets of the natural param-
eter space.

let § be a symmetric positive definite matrix on IRp, and let

Q¢ be the Gaussian measure on RP with mean zero and covariance ,
}

i.e.,

2 (Zﬂ)_p/2 / exp{-yi‘t-l v/2}dy

4D qg(w) = er H7 A

for Borel sets A. In addition, let Qh be the class of p-dimensional

half-spaces

(4.2) Aj(@) = {xe®P: 2Tx>al
where

(2] =1
and

/

0<acx nl 6/log n

PROPOSITION 1, Let K be any compact subset of {! (the natural parame-
ter space of the exponential family {Pe}, which is assumed to be an

open set of IRp). Then




-1/2,. _ -
(4.3) ;i: g:g gzgi Pe{n (Sn n“e)‘:A}lqt(e) =1
and

(4.4) lim inf inf Pe{n_llz(Sn—nue) eA}/Qt(e) 4 =1

n+*® 9cK Ae(
n

The proof of this is a rather tedious modification of the
proof of Cramér's Theorem (cf. Feller [7], Chapter XVI, Section 7).
The only real novelty is the uniformity in 6. However, the third
moments {EGIQT(Xl —ue)|3; |2] =1} are uniformly bounded away from «,
and the second moments {EGIQT(XI-ue)lz; |2] =1} are uniformly
bounded away from zero, for 6 in any compact subset of @ (recall that
the covariance matrices }(8) were assumed to be positive definite on
). Thus the Berry-Esseen Theorem provides a bound for the error in
the normal approximation to the Pe-distribution of n—llz(SLT(Sn -nue))
which is uniform in 6 and 2. Moreover, the errors in the Taylor

series expansions used in the proof are all uniformly small, again by

the compactness of K.

COROLLARY 1. Let K be a compact subset of Q. Then for all § > O and

k>0

/2

log n) = o(n"%)

1
(4.5) max P, {|S_ -nu,| >6n
B8eK 6 '"n )

and for all € such that 0 < € < 1/6




(4.6) rga; Pe{lsn-npel >5.n¥i+e} = O(exp(-62 nse/z})
€

as n *> %o,

The proof is straightforward.

COROLLARY 2. Let K be a compact subset of 2, and suppose 6 + A(8) is
a continuous function of 6¢K with values in the group of symmetric

positive definite p Xp matrices. Then

(4.7) By lgca.0y (S, ~nug) THO T - A0 (S_ - niig)/20)
+ (det A(6)det 1(0)) 1?2

as n + ®; B(n,0) is the event

(4.8) B(n,0) = {js_-nugl<n’Za}

and {an} is any sequence of constants such that a_ > © and

/

a = O(n1 6/log n). Furthermore, the convergence in (4.7) is uniform

for 6eK, for each sequence {an}.

PROOF. This is accomplished in two stages, using Theorem 1 teo
establish the uniform integrability of the random variables, and
Bhattacharya's multidimensional extension of the Berry-Esseen Theorem

for the integration.

BHATTACHYARYA'S THEOREM (cf. Bhattacharya and Rao {3], Corollary
15.2). Suppose xl,xz,... are 1.i.d. random vectors in RP with mean

zero, covariance I, and finite absolute third moment Py = E]Xll3.
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Then for each bounded Borel measurable function f : R®P+ IR

2
leecs a2 - 1 epe P2 ayramPl?)

-1/2 . -1/2
< €y M(f)p3 n + Zm(f,czp3n )
where t’
M(£) = sup [£(x) -£(y)| .
x,ye R 1
b
-1y1%/2 /2 A
w(f;1€© = sup J e ]YI /(21r)p ]
wer® EF |
t 3
. sup{lf(xl+u)—f(x2+u)l =|x1‘Y|le2"YI < €ldy ‘2
Sn=)(1+...+)(n ,
and cl,c2 are universal constants (which may depend on the dimension
P).
The idea is to apply this result to the functions :
fg p () = 85(») lgg(y) <b) 4
where ‘4
1 i3
g = exply’ (@ -3@? a@t@®Hy/2) f

It is clear that for fixed b,

sup M(f, ) <o
6eK 0,b

and
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lim sup ou(fe b’ e =0 ,
€0 8¢k :

and that

2
lin f £ b(y)e‘lyI 12 491(2mP/? = (get a@)1(6)) /2

bie

uniformly for 8eK. Thus to prove (4.7), it suffices to show that for

any € > 0 there is a b so large that

/2 /

(4.9) sup Eq lB(n,O) l{ge(t(e)_l 2) >b}

-1
(S -nign
8eK " o
- gg(B@ M2 (s~ H <€
Let

§ = 1A infl{x A®)x/x. $(8) L x:0¢eK, |x]=1}:

since K is compact, 8§ > 0. Then for each 8 €K there is a polyhedron

R(8) such that for every y € R(8)

v d® - Ay <2

and

yT i@y > 2a-s/2)7t

This follows from the definition of § by piecing together patches of
hyperplanes along the level surface {y ¢ RP: yT(t(e)‘l- A(8))y= 2}
(cf. Figures 4.1 and 4.2). Furthermore, since $(6) and A(8) are

continuous in 6, R(8) may be chosen 'continuously” in 6:
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in particular, it may be assumed that there is a finite integer m

such that for each 6 eK, R(8) has no more than m distinct faces.

yI(4(8) L - a(8))y =2

— /,
/7 <— v ($(0 L -ae))y =2 /
/ / Ve

\

e

R(8)
]

Figure 4.1 Figure 4.2

Each polyhedron R(8) separates RP into a bounded component

and an unbounded component, which will be denoted RINT(G) and

REXT(G). Now Theorem 1 and a crude bound on the tail of the cumula-

tive normal distribution function imply that for b < a < ¢ an, 6 eK

b

and sufficiently large n

-1/2 a-l c

B{(S_-nug)n R™T(6)} < 2m - expl-a/ (1 - 6/2))

But
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-1/2 (s -1/2

) >b}

(4.10) Eg lB(n,G) l{ge(t(e) o ~OMg)n

- gy (3@ 2(s_—nun7M?

< 1 Ryl ~augIn ™2 e(10gM/? by (1 -6/) 2 BT (o)
k=0 n

2

|s_-nugla 2 <a )

+ max{gg(£(0) /2 y) ;

/ -k/2 REXT

y t:(log1 2 b)(1-68/4) ©);

/ ~(k+1)/2 REXT

v ¢ (Log™’? b)(1-68/4) 0}

oo
<2m I exp{(log b)[(1-8/&)" %) 1 sy *a -s/2)7 1)
k=0
for sufficiently large n, and all 6 e K. The series on RHS (4.10) can
be made arbitrarily small by choosing b large; this proves (4.9),

and thus (4.7). [///
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5. Expansion of likelihood Functions
Let N be a smooth, compact, r-dimensional submanifold of T,
and let f(*) be a smooth, strictly positive probability density on N

(with respect to the 'volume element' measure o(°)). Define
P

(5.1) Q) = fy Pg(y)(A)f(y)c(dy) H

thus Q is a probability measure on the o-algebra s(xl,xz,... ).

Furthermore, the measures Pe and Q, when restricted to the c-algebras

(n) (n)
0

J(Xl,...,xn) (these restricted measures will be denoted P and Q

respectively), are mutually absolutely continuous, and

~ T A _l
8(y) " S_-nP(6(y))
(5.2) dP(()n)/dQ(n) = /g n f(y)c(dy):[

The objective of this section is the derivation of a more tractable

(n)

expression for dPén)/dQ when Sn/n is near N, as n + ®,

It will be convenient to have some notation available for
various matrices which will occur. Recall that the tangent space
TN(y) to N at y is the vector subspace of R defined by
(5.3) TN(y) = {veIRP : @ smooth g:[-1,1]~+ N

with g(0) =y and g'(0).= v} ;

thus TN(y) is an r-dimensional vector space, for every yeN. Let

gTN(y) denote the orthogonal projection operator from ® to TN(y),
and let
(5.4) B (y) = $BynTe H ()"t P  1CIC)

1 =TN(y) 2 ~TN(y)

37

y e cfﬁg\,ﬁﬂww_ R S

— e ——— =




A \-1
(5.5) Hy(9) = Pryeyy 36(y)) Prygyy P VO

Note that Hz(y) considered as an operator on TN(y) is invertible,
since X(@(y)) is invertible; furthermore, since TN(y) is vector-
space isomorphic to IRr, Hz(y) may be interpreted as an operator on

Ikr, and det Hz(y) is then unambiguously defined.

PROPOSITION 1. Suppose ylf:N, and

(5.6) S /n=y, + 172

/7

where |h| < st Then as n + ®

_n‘b(sn/n) I'/2

(5.7) dPén)/dQ(“) ~ e f(yl)_l (n/27w)

+exp G By - By In/2)

© dety(yy M7 .

This relation holds uniformly for y, €N and I(Sn/“) -y, <6nl/7‘1/2,

for every § > 0.

The proof 1is a relatively straightforward exercise in the use
of Laplac;}s method. The basic idea is that for large n the only
part of N which contributes to the integral in (5.2) is a small patch

1/7-1/2 log n), and that the inte-

around 2 (essentially of radius n
gral over this patch is approximately equal to the integral over the
tangent space at Yy- Because N is compact, all of the errors are

uniformly small.
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1 Since the relation (5.7) is crucial to all that follows, the

argument will be given in detail. Taylor's Theorem yields
5.8 8T Tx-p@) - 0 = -y" FEGN T x-y)) A
-2 -y AN -y
-3 -y T 3BT -y
+ oCly, -y1? + ollx -y [P E
by way of the identities :
(5.9) y, = U ¥@B ) ]
Sy = v, oGy
| 16k = v v |
FEG ™ = 7 s

Because N is compact, the remainder terms in (5.5) are uniformly
*
small, {.e., there exist C,§ > 0 such that whenever yl,yeN,

* *
lY'yli <§ , and ‘x’yll <4,

[ eviets el Y

(5.10) o(lx-y,1% < clx-y,|?

3
|

3
o(ly -y, 1" < ¢cly-y,




Relation (5.8) may now be used to integrate over the set of

y €N which are within n1/7'1/2

log n of y,. If xeT, and -
(.11 Sy exp{n[’é(y)T x -w(é(y)) -o(x) 1}

1/7-1/2

1{]y —yll <n log nl} f(y)a(dy)

~ exp{-n(x—yl)T i(/é(yl))—l (x—yl)/z}

IR > RO RO X S

© E(yp)

. exp{n(yoyl)T t(é(yl))-l (x-y))} :
T N -1
expl-n(y-y;) $(6(y;))"" (y-y))/2}

1/7-1/2

Hly -yl <n log n} o(dy)

~ exp{-n(x -yl)T I(é(yl))-l (x -yl)/2}

: f(yl)

gy @ty 3G ey

+ expl-ny” 3By y/2) m(ay)

where m(dy) denotes the Lebesgue measure on TN(yl). Moreover, the

last relation is valid uniformly for y, eN and |x-y]| £6n1/7-1/2’

since the curvature form of N at Y1 is uniformly bounded
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(in operator norm) for Y1 eN (because N is compact). The last

integral may be evaluated exactly by completing the square, leaving
(5.12) [y exp{al8(y)T x-p(B(y)) -(x) 1}

1/7-1/2

H[y-y,l<n log n} f(y)o(dy)

- expl-n(x-y )" 1@ (x-y)12)

r/2 /2

© £y - @n/m)% - (der wy(y 7t

+ exp{n(x -~ yl)T Hl(yl) (x - yl) /2} .

-1/2 +1/7

Note that since Ix—yll <dn the last quantity is

never smaller than exp{-C' 22T}, Thus to complete the proof of

(5.7) it is sufficient to show that the integral over

] n1/7-1/2

{yen: [y—y1l > log n} is of smaller order of magnitude.

Now the function

u(y) = 8T x-v@y)) - o(x)

is a nonpositive function of yeT whose only zero is at y=x. The
Taylor series expansion (5.8) for u(y) shows that there exist con-

*
stants C > 0 and n, such that for n > n,,

1/7-1/2

ly; -yl >n log n
Ix-y.| < aallT-1/2
1 —_—
and yleN
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imply
(5.13) 6T x-v(By) - ¢(x) < -ctat* 27 log? n
Consequently,
(5.14) Iy ek [xD>- @) -0 1}
Hly -y, >at/ 7Y 106 0} £(y)otay)
< exp{-C" a2/7 . log? n} .

This completes the proof of (5.7). [//

Let

Mo={xemp:¢(x)<€0 and uTx=oVuemo(0)}

.

Suppose that N is a smooth compact r-dimensional sub-manifold of

Mo fn Fl with boundary, e.g.,

N = {xeMo ﬂI‘l:Glid)l(x)-tbo(x) <€ < eo} .

It is possible to mimic the preceding analysis to obtain asymptotic

expressions for likelihood functions, but only when Sn/n is not too

near the boundary 9N : near 9N, N is not well approximated by its

tangent space, but instead by a half-space of its tangent space.

As before, let f(°) be a smooth, strictly positive probabil-

ity density on N with respect to the volume element measure 0(°), and

let

Q(A) = fN P@(y) (A) f(y)o(dy) .

i i
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PROPOSITION 2. Suppose y, €N and N

-1/2

R
(5.15) Sn/n =y, +h , and dist(Sn/n, oN) >nl/7-1/2 1 4

og n

"4
with |h| < 02’7, Then as n + o, »

“né (s, /n) /2

(5.16) dPén)/dQ(n) ~ e £(y,) " (m/2m)

+ expth BBy ) ™ -1, (y)I0/2)

- det (i, (y, N2 ;

This may be rewritten as !;

=A

(5.17) dPén)/dQ(n) ~e M f(yl)'l(n/:zw)r/2

+ explh (BB v ) ™ -1, (v,))0/2)
. T
exp{-h H3(y1)h/2}

+ (det Hy(y N2

where

2 2
(5.18) Hy(y) = ¥ 60y) = Vo 0,() + 9, 0(y) .

Relations (5.16) and (5.17) are valid uniformly on the event

1/7-1/2 1/7-1/2

{dist(Sn/n, N) < én R dist(Sn/n, aN) > n log n}.

Recall that An = n(¢1(Sn/n) —¢0(Sn/n)) is the log-generalized ’

likelihood ratio statistic for testing H . v. H;. It is worth noting

1

0




o o= preTIrr———

a consequence of (5.17): for each compact K € N\ON and each § > 0,

there is a C > 0 such that
dist(Sn/n, K) < 6n_1/2 log n

implies

A
(5.19) dPén)/dQ(n) <e ™ exp{C log2 n}

The proof of (5.16) is essentially the same as the proof of

(5.7), and (5.17) follows simply from (5.16): note that
n6(S_/n) ~nd, (S_/n)
= (/20) (5, =0y (V) $(y) -V 03 (yp }S, - ny))
+ o(n'zlsn-ny1|3)
and
n$o(S,/m) = (L/2n) (s, =nyp T V2 00(y,) (s ~ny;) +0(2[s, ~ny, |

Vy ¢9(yy) = 0 for y, €My NT;. That the 0(*) terms are uniformly

small follows from the compactness of N. ///

44

SRR SN o S, T P, ¢ N - v PG

»4..1_“_.---.



6. The Collapsing Argument
The limiting constants in the conclusion of Theorem 2 occur -
as integrals over certain submanifolds of the mean parameter space:

this corresponds to the fact that the bulk of P {A >n €} and

PO{Tia 611} is accounted for by sample paths for which Sn/n and ST/T
are near the critical manifolds. The purpose of this section is to
prove that the probabilities in question actually do shrink to inte-
grals on the critical manifolds (hence the term "collapsing

argument': 1t is not meant to suggest any structural deficiency in

the proof itself).

Let

T = {inf n>a 6;1: A, >a)

1
M, = {xemo(O) s d(x) < eo}

Ne = {xeMy NTy:0(x) =4 (x) = €}

~

N = {xeMo :d(x) = €}

PROPOSITION 1. Assume that 0 < €, 62 < 60 and 0 < El < €< 62 Then

for every 8§, k > 0

-1/2 ““E)

(6.1) PO{’\nznG; dist(Sn/n,NE) > &n log n} = o(n_k e

v and
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~-1/2

. -1 Xk -
(6.2) Po{Taﬁaél ; dist(ST/T, Na/T) >8a logal = o(a e a)

as a * >

The proof will proceed by a series of crude estimates based
on a likelihood ratio identity. The first step is to show that only
those sample paths for which the sample means Sn/n fall in a certain

compact subset of RP are of any consequence.

LEMMA 1. There is a compact set K €T such that x €K implies

dp(x) < EO; also
(6.3) {x €T : ¢(x) <max(€, 62)} < K°

and

_m%

(6.4) PO{H n>m: Sn/n ZK} = o(e )
as m + »©, for some 63 > max(€, 62).

PROOF. Choose 63,61‘ so that

max(E,Ez) < 63 < €4 <&

Then the sets

K, = {xeT :¢(x)_<_63}
K, = {xer :¢(x)§€4}

are compact (this is the reason for condition 1 on EO), and K3 is

contained in the interior of Ka. Thus there is a compact K contained
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{ in the interior of K, and containing K3 in its interior, whose P
boundary dK is a polyhedron (i.e., K is the intersection of finitely
many half-gpaces). The existence of K may be deduced from the

finite-~dimensional Krein-Milman Theorem, the compactness of 8K4, and

the convexity of ¢. ;

4

Figure 6.1

Now Chernoff's large deviation theorem for random variables
(cf. [4]) gives exponential bounds for PO{Sn/n ¢ H} where H is any
half-space; since K is the intersection of finitely wany half-spaces,
and since
o

PO{H nzm:Sn/ndK}g I P{Sn/nﬂ(} .
n=m

(6.4) follows easily. /[//

Let f(:) be a smooth probability density on I (with respect

| to Lebesgue measure on ®P) which is strictly positive on K. Define

ﬁ
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(6.5) Q) = I Py WEMYY

(n)
0

s(xl,...,xn)) are mutually absolutely continuous, and

then Q(n) and P (the restrictions of Po and Q to the o-algebra

AT A -1
8(y)"s_-ny(6(y))
(6.6) dPén)/dQ(n) - [é, e n f(y)d;] i

LEMMA 2. There is a constant C > 0 such that

-n$(S_/n)

(6.7) [dg(“)/dq(“)} 1{s /nex} < C T

PROOF. To obtain an upper bound for (6.6), one may replace the
domain of integration ' by a p~dimensional cube of side 1/n2 centered
at Sn/n. Since K is compact and f(-) has a strictly positive minimum
cn K, (6.7) follows routinely. ///

To prove Proposition 1 it now suffices to show that there is

a constant $ > 0 such that if x ek, €1 <b < 62, and

(6.8) 6,00 - 6,00 > b

and

(6.9) dist(x, N) > sn /2 10g n
then

(6.10) 6(x) > Bn"! log? n + b

For then Lemma 2 would imply
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C o

/2

. -1
{6.11) PO{/\n >n€; dist(Sn/n, NG) >&n log n; Sn/n K}

2
e-nE e-B log'n

< cn?P fia dqQ

and

(6.12) PO{TaiaeIl; dist(ST/T, N )><sn'1/2 logn; ST/TE:K}

afT

-8 log2 (a E;l)
d

< C(aéi'l)2p f{_}e-a e Q

LEMMA 3. For every § > O there exist ¥y > 0 and 8 > 0 such that if

xeKand €< ¥y

(6.13) dist(x, 1’1) > §€
implies
(6.14) 8G0) - 0,(x) > BE

PROOF. First recall that ¢-¢1 is a nou-negative function of x€T
which is zero only for x el‘l : consequently, it suffices to consider

only those x €K for which

(6.15) dist(x, I‘l) <n ,

where n is a small positive number of our choosing. Now n may be

chosen so small that for x €K satisfying (6.15) xe:U1 and the MLE map

~

61 is submersive in a neighborhood of x (cf. Lemma 1, Section 3), and

also small enough that for x €K satisfying (6.15) the two-term Taylor
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series for (¢ -¢,) around pjz is accurate enough that
1 el(x)

(6-16)  6(x) -3 00 24(g () =105 ()

T

T o2 A A
+ B G-k () T OO0 () b () -

Since ua eT. it follows from Lemma 1 of Section 3 that
Ol(x) 1
35 ) = 1045 ()
1 1
and

V¢(ug1(x)) = V9, (ugl(x)) = 6(x)

Thus to prove (6.14) it suffices to show that for x €K satisfying

(6.15) there exists a 8 > 0 such that
e-ms o DT P20 -0 . Ox-1a ) > B(dist(x, I )7
8, (=) 1’8, o 8,007 = » 1y

~ l
Notice first that x-—uél(x) eTQl(el(x)) , and recall that
A J-
Vz ¢1(u51(x)) } TQl(el(x)) = 0 (this is (3.14) of Lemma 1, Section
3). Thus by the compactness of K and the fact that
VZ d(y) = $(§(y))-l is everywhere P.D., there exists a B > 0 such

that whenever x €K satisfies (6.15),

" T o2 R " i 2
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Since ual(x) eFl, it 1s clear that
(6.18) lx-uél(x)l > dist(x, I'l) .
This proves (6.14). [//

*
LEMMA 4. For each § > 0 there exist vy > 0, § > 0, and B > 0 such

that if xcK, €<y, and

(6.19) dist(x, MO) > €
but

(6.20) dist(x, T)) < 8"
then

(6.21) $o(x) > BE

PROOF . ¢0(x) is a convex non-negative function of xe€ K which is zero

iff xeMo. Thus it suffices to consider only those x eK for which

dist(x, MO) <n: heren > 0 is a constant of our choosing.

Recall that M and Fl intersect transversally whenever they

0
intersect (this by condition III in the definition of Eo). By

*
Lemma 2 of Section 3 there exist § > 0, n > 0 small enough that if

x €K satisfies (6.20) and

(6.22) dist(x, Mo) <n ,

then

(6.23) dist(x, M) NT)) < o
51




Here n* > 0 has been chosen small enough that if x €K satisfies
(6.23), then ero and the MLE map 60 is a smooth submersion in a
neighborhood of x, and in addition the two-term Taylor series for ¢O
around P 1 (x) is accurate enough that

2,(0)

(6.24) 9 (2x) +(x-P) T W0 (BX) +(1/4) (x-P) T V¥ ¢ (B) (x - P)

= (W& (x=B0)T ¥ 9 (BX) (x - BX) < §(x)
4
(P=P . denotes the orthogonal projection onto 'I'QO(O) ).
T2, (0)
By Lemma 1 of Section 3 Vz¢)0(y) is strictly P.D. on TQO(O)
for any y such that go(y) = 0; since x-_lixc'IQO(O) the lemma follows

from (6.18) and an obvious compactness argument. ///

*
LEMMA 5. For every § > O there exist § > 0, 8 > 0, and ¥ > 0 such

that if € < v, and x e[ satisfies

(6.25) dist(x, ¥, NT) <6 €
(6.26) aist(x, N) > 6 ¢

and

(6.27) 6(x) > b

then

(6.28) 6(x) > b + BE .

Here N = {ycHo nry:edy) =b}, and (6.28) holds for all b such that

€ <b< € (for the same B).
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PROOF. It follows from Lemma 2 of Section 3 together with condition
* &
I1II in the definition of Eo that there exist § , B, and Y such that

1f x T satisfies (6.19)-(6.20), then
(6.29) dist(x, {yel :d(y) =b}) > B € .

If x also satisfies (6.27), then

(6.30) dtst(x, {yeT : @y <b} > p*c .

Relation (6.28) follows directly, since ¥¢ is nonzero on the level
surface {y T :¢(y) =b}. That it holds uniformly for € <b<§
follows from an easy compactness argument. [// '

It now follows from Lemmas 3~5 that if x ¢ K satisfies ’

(6.8)-(6.9), then it satisfies (6.10) (since ¢_>_¢1_>_¢02_0). This

proves Proposition 1. ///
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7. Proof of Theorem 2

The proof of Theorem 2 will be based on the likelihood ratio

identity

(7.1) Bolh) = f[E5 s 1, Lyloy(dy) /o0

where

L
(7.2) M =M(&, €; 0) = {yef'l N TH(0) @ €5 <, (y) -¢O(y)§€6} ,

(7.3) 0<E <€ << CEg<g ,
(7.4) L. = d(py * aT)/d(Q LIRS
and

(7.5) QB) = Jyy By (BIOW(y)/0GD .

Recall that M is a compact manifold-with-boundary, so its total sur-
face area ¢(M) is finite. The relation (6.1) holds for all events
AE:GT (3T is the "stopped" sigma algebra of events A for which

AN {T<n} ss(xl,...,xn)} for every n) and (7.5) holds for all
BeMﬁmr“.L

According to Proposition 1 of Section 6,

/2

(7.6) PO{T8_<_a€1—1; dLst (S, M€ ,€,30)) >6 - a 12 10ga) = o(aKe™®)

as a *> », for all k,§ > 0. Consequently, it suffices to show that

(7.7) PO(A) ~ RHS (3.22)

for the event
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(7.8) A= {Tiael : 3-1/2

loga > dist(ST/T, M(€1,€2;0))} .

The plan of the proof, then, will be to evaluate (7.1) for A defined
in (7.8) by exploiting the asymptotic formula for 1A L’I‘ provided by

Proposition 2 of Section 5.

NOTE: Throughout the rest of this section, A will be the event
defined by (7.8).
The manifold M divides neatly into three zones, in each of

which the integrand behaves differently. These are

=1/2 +n

(7.9 My = {yeM: € +a 29, -9, <& _a~H24m,

My = {yeM:d () -0 < € +a H/2HD

8-1/2 +T]}

v

N{yeM: dist(y,M(el,ez;o)) < 8-1/2 +n,

M3 = {yeM :diSt(Y»M(El,Gz;O)) _>_a°1/2 +ny

where 0 < n < 1/32 is some fixed constant. It is clear that
Ml 4 M(€1,€2;0)° and that M2 ¥ 3M(€1,€2;0) (thus O(Mz) + 0 as a + »),
It will develop that /[

"

smaller order of magnitude.

~ RHS (3.22) and that f, and fM are of

M 3

For y €M, define




(7.1 ny =n(a,y = L@/, -4 () -a/2*N]
n, = n,(a,y) = L (a/(6;(y) -0,(»)) -a'/2*12
8, = 0,y = [ @/, (y) -0 +a /2 *1/2 ]
and

(71D £ () = (5, -0 GGG -H () -H(I(S -ny) /2
where Hl(y) and H3(y) are as in (3.26) and (3.28).

LEMMA 1. As a » =,

1/2 +8 -1 -1
(7.12) max P3, {|S_-ny|>C a , some n¢ [a€ ™, a€, 1}
ven 0 n & 2§
_B
=o(e®) ,
n/4
(7.13) max Py, . {T ¢[n (a,y), n,(a,y)]} = oe™® ) ,
yle 8(y) "a 2 3
" () _.(y)
(7.14) ;23 Pe(y){lcn cnl | > ¢/log a, some n e[nz,n3]}
1/16
= o(e”? )y
and
1/32
(7.15) max P53, {|(5./n) -(5. /n)] > ca M2 10gal = o(e™® )
yeM 8(y) n n, 1

for all C >0, 0 < B < 1/6.
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This is a routine consequence of Corollary 1, Section 4; the

proof is left to the reader.

Next define events

-1/2+n
(7.16) A, = {l(snllnl)-yl <a }

2

A; = {I(Snl/nl) - (ST/T)l < a—ll log a}

Nz (v -tp(»| <1/1og a}
1

*
A;* = Ay ﬂ {Ta € [nz(aiy),n3(a'y) ]} .

By Proposition 2, Section 5

-A (q4-9,) /2
(717 L 1,1, Ls ~e Texplz (pir/zm * O
y vy 1
1/2
* (det H,(y)) / cx(M)lA 1, 1,
y ¥
and
_/\T
(7.18) LoL, 1, lax ~e ex‘pfcn (y)}G(M)lAlA 1 %
y 'y 1 y 'y
(ql-qo)lz

* (a/2m(8) (v) - d,(3)))

* (det Hz(y))ll2 ;

furthermore, these relations are valid uniformly for ye M and uni-

formly on the events Ay n A;, and Ay n A;*, respectively.




LEMMA 2. As a + o,

-(AT—a)

(7.19) Py {IE@(y)[lAlA;* e |3

8(y) nl(a’y)]’\)()')l >€l + 0

for every € > 0 and every yE:M(El,Ez;O) such that the random variable
T
(91 () =d(y)) + (X -y) " V(&) -6,) (¥)

has a nonlattice distribution when Xl ~ P@(y) (cf. Lemma 4,
Section 3).

The o-algebra 8h is the one generated by xl,...,xn . It

should be noticed that t;e convergence indicated by (7.19) ieed not
be uniform in y. Fortunately, the rv's are bounded.

Lemma 2 is very much related to the nonlinear renewal theorem
of Lai and Siegmund [9]. Although the statement of their theorem
does not imply Lemma 2, their proof does: in fact, they obtain an

unconditional limit theorem by first proving a conditional statement,

which in our case becomes

_(/\T—a)
(7.20) B3 (y) (e lsnll -v(y) +o0 A.S. (Py(.y) -

Since 1A lA;* + 1 (cf. Lemma 1) A.S. (Pé(y))' (19) follows from this.

The key to evaluating E@(y) 1 is now provided by

A lAy IA;* Ly
Corollary 2 of Section 4. This allows that uniformly for yeM,

. Apeny . -1/2
(7.21) Efé(y) lAyexp{Cnl(a'y)} fdet 3(6(y)) (Hl(y)+n3(y)))

. o §
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as a + ©, Consequently by (7.18), (7.19) and the Dominated

Convergence Theorem

—(ql-qo)/Z a
(7.22) Jhla e Eé(y)[lAr“yrh;* L;1 0)(dy) /o, (M)
> C(€1.€2;0)
Recall from Proposition 2 of Section 5 (5.19) that
- 2
(7.23) lA L <e exp{C log“ n}

for some constant C. By Lemma 1

n/4
n *hyy -a .
max Pe(y)(A\(Ay n Ay )) = o(e )
yeM1
thus
-(ql—qo)/z
(7.24) %ﬁ_ a e Eé(y)[lA\(AyfA;*) LT] OM(dy)/OM(M)
i +0 as a-+®
E For y EMZ, (7.17) and a compactness argument show that there

*
is a constant C > 0 such that

~(qy-qp)/2

*
a e® L <cC exp{Cnl(y)}lA

T LAPA ra* y
Yy

and (7.21) implies that there is a constant C** > 0 such that

-(ql-qc) /2 a L t 1.
T Ar“yrh

L < C .

E3(yy 2 5 <




This, (7.23), and the fact that )

P (A\(A_ N &%) = o ‘an/4>
max A = o(e
yeM, 8(y) y y
imply
-(ql"qo)/2 -a
(7.25) fMZ a e E@(y) L’I‘ 1A oM(dy)/oM(M) -0 ,

since UM(MZ) + 0.

Finally, for y €M3,

-1/2 +n/2

(7.26) A n{|s /a-y|<a for all nelagliag ]l = ¢

By Lemma 1

max Pé(y){lsnllnl -y| >a2*N/2 g0 some ne [aégl,aEIl]}

y€M3

n/4
=o(e™® ) ;

this (7.23), and (7.26) imply

_(ql_qo)/z a
(7.27) fM3 a e Eé(y)[lA LT] ay(dy) /o, (M) > 0

The relations (7.1), (7.22), (7.24), (7.25), and (7.27) prove

Theorem 2. ///




[9]
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